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Diffusion and Propagation in Triangular Lorentz 
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The diffusion process of point particles moving on regular triangular and 
random lattices, randomly occupied with stationary scatterers (a Lorentz lattice 
gas cellular automaton), is studied, for strictly deterministic scattering rules, as 
a function of the concentration of the scatterers. In addition to the normal and 
various kinds "of retarded diffusion found before on the regular square lattice, 
straight-line propagation through the scatterers is observed. 

KEY WORDS: Normal and retarded diffusion; propagation: lattice gas; 
cellular automata; triangular lattice; deterministic scattering rules. 

1. I N T R O D U C T I O N  

In a number of previous papers ~l 4} we have investigated diffusion in 
Lorentz lattice gas cellular automata (CA) ~5~ on a square lattice. There 
point particles move, all with the same speed, along the bonds of a regular 
square lattice, the sites of which are randomly occupied by stationary 
scatterers. Depending on the scattering rule, four different types of diffusive 
behavior of the particles through the scatterers were observed, leading to 
four classes of diffusion(4): (1) normal diffusion, where the distribution 
function (d.f.) of the point particle is Gaussian and therefore the mean 
square displacement A ( t ) ~  t (class I); (2) anomalous diffusion, where the 
d.f. is non-Gaussian, but d ( t ) ~  t, so that still a diffusion coefficient can be 
defined (class II); (3) abnormal diffusion, where the d.f. is non-Gaussian 
and A ( t ) ~ t  I-~, with 0 < a < l  (class lll); (4) no diffusion, where the 
particles are all trapped in closed orbits and d( t )  remains finite (class IV). 
While the first class obtained for all probabilistic scattering rules con- 
sidered, the other three pertained to deterministic scattering rules. We 
always restricted ourselves to deterministic scattering rules in the presence 
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of two kinds of scatterers: scatterers that upon collision scattered the 
moving particle either to the left or to the right. It appeared that 
introducing a slight--but still deterministic--modification of the deter- 
ministic scattering rules in the fixed scatterer models, viz., by allowing the 
scatterers to change from one kind to the other upon a collision with a 
moving particle, thus introducing a flipping scatterer model, ~1~ reduced the 
diffusion process from the unusual behavior of classes II--IV to the normal 
behavior of class I. By changing the relative concentration of scatterers in 
a mixed model tr) with probabilistic and deterministic scattering rules, 
dynamical phase transitions could be obtained between lattice gas CA that 
behave according to the classes I-IV. t4) 

This experimentally discovered new and rich behavior of diffusion has 
not yet been treated theoretically in any adquate way. Only models with 
purely probabilistic scattering rules, where the diffusion is normal and the 
only problem is the calculation of the diffusion coefficient for a given 
(probabilistic) scattering rule as a function of the concentration of the 
scatterers, have been treated extensively with existing methods of kinetic 
theory by Ernst, Binder, and Van VelzenJ 7 9~ There the deviations from the 
Boltzmann approximation can be calculated in a more or less standard 
manner by using cluster expansions and related techniques of kinetic 
theory. It is interesting to note that the application of these kinetic methods 
by Van Velzen ~9) to the mirror model, ") though intended to apply to fixed 
scatterers, produced results in accordance with flipping scatterers. Due to the 
presence of closed (periodic) orbits, implying infinitely long memory effects, 
it seems likely that new methods will be necessary to understand the 
general behavior of deterministic models from a microscopic point of view. 
To the best of our knowledge, no such methods are available at present 
either in kinetic theory or in the mathematical literature, where it appears 
that so far only probabilistic models have been considered. For that reason 
it seemed prudent to try to isolate features of a general nature of the 
deterministic models as much as possible. Since we had investigated the 
dependence of the diffusion process on the nature of the scattering rules 
always on a regular square lattice, it seemed natural to do likewise on a 
random lattice, thus introducing a new type of randomness in the problem. 
Since the way we constructed this random lattice led to a triangulation of 
the plane, we also studied, for comparison, the diffusion on a regular 
triangular lattice. The results of these new investigations are reported in 
this paper and can be summarized as follows. 

1. The randomness or regularity of the lattice does not in general 
change the basic nature (i.e., the class) of the diffusion process for a given 
scattering rule for the fixed scatterers. 
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2. While on the regular square lattice the motion of the particles 
through the scatterers was always a diffusion process, on the regular 
triangular lattice with flipping scatterers, straight-line propagation (in a 
coarse-grained sense) of the particle through the scatterers was discovered. 
In this case the mean square displacement is A(t),-~t 2 and undamped 
propagation along lattice directions occurs. This behavior obtained for 
flipping scatterers on a fully occupied lattice only. 

The organization of this paper is as follows. In Section 2, we introduce 
the two models by specifying the collision rules. Basic quantities for 
describing diffusion processes are defined, the Boltzmann approximation to 
the diffusion coefficient is given, and the simulation method is described. 
Section 3 is concerned with our results for a regular triangular lattice fully 
occupied with fixed scatterers. Anomalous diffusion and a connection with 
the percolation problem are discussed for the fixed scatterer models. 
Section 4 shows that for both models on a regular triangular lattice fully 
occupied with flipping scatterers, the motion of the particle through the 
lattice is by pure propagation. In Section 5, results for a partially occupied 
regular triangular lattice are presented, where both normal and abnormal 
diffusion are found. Section6 discusses the diffusion on a random 
triangular lattice. Finally, in Section 7 we give a summary and discussion. 

2. THE MODELS, THE BOLTZMANN APPROXIMATION, AND 
THE SIMULATION METHOD 

2.1. The Models 

We consider a two-dimensional triangular lattice with lattice sites ran- 
domly occupied with stationary scatterers, such that there is at most one 
scatterer at each lattice site. The concentration C of the scatterers is the 
ratio of the total number of scatterers N to the number of lattice sites M, 
so that 0 < C = N/M ~< I. In addition, point particles are randomly put on 
the lattice, which have the same speed and velocity directions restricted 
to be along the bonds of the lattice, so that the particles always stay on 
the lattice. The particles travel one lattice distance per unit time in the 
direction of their velocities. It is convenient to set the speed of the particles 
as well as the lattice distance both equal to one. When a moving particle 
meets a stationary scatterer at an occupied lattice site, its velocity direction 
will change according to a prescribed deterministic scattering (or collision) 
rule; the rules we considered will be discussed below. The six possible 
velocity directions that can occur at a lattice site are shown in Fig. la and 
will be denoted by i =  1 ..... 6. Five different models will be considered, 
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Fig. 1. (a) Velocity directions on the triangular lattice; (b) rotation scatterers of model I; 
(c) mirror scatterers of model 2, where the heavy lines represent a (tree star) mirror and the 
designation of right and left is arbitrary. The arrowed trajectories indicate typical reflection 
paths. For clarity here as well as in the other figures the particle trajectories have been curved 
at collisions. 

corresponding to five different collision rules. We remark that there are no 
collision between the point particles themselves. 

2.1.1. M o d e l  1. In the first model the scatterers simply rotate the 
velocity of the colliding particle over +2rr/3 (widest angle it can turn) / 
clockwise or counterclockwise, depending on whether one has right-hand 
scatterers (R) or left-hand scatterers (L) (cf. Fig. lb). If the scatterers do 
not change their character during a collision, i.e., each always remains a 
right or a left scatterer, the model is called a fixed scatterer model (or 
model 1A); if, on the other hand, they do change upon collision with a 
point particle from right to left scatterers (or vice versa), the model is 
called a flipping scatterer model (or model 1B). Model 1A is a generalization 
to the triangular lattice of a model introduced by Gunn and Ortufio. (j~ 

2,1.2. M o d e l  2. In the second model the scatterers behave like 
double-sided mirrors and reflect the oncoming particle as if it was a photon 

2 We remark that, for the fully occupied lattice, if the moving particle turns + n/3 upon colliding 
with a scatterer, the model is equivalent to the same model on a honeycomb lattice. 
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hitting a mirror (cf. Fig. lc). While on a square lattice there is an obvious 
way to occupy the lattice sites with mirrors to achieve this (viz., along the 
bonds of the two sublattices, at angles 7r/4 or 3rr/4, respectively, with those 
of the basic lattice), on a triangular lattice a two-sided "tree star mirror" 
system has to be in place at each occupied lattice site, as illustrated in 
Fig. l c. There are two possible positions of these tree star mirrors, 
which we will call right (R) and left (L) mirrors, respectively. Again, if the 
mirrors have fixed positions, the model is called a fixed mirror model (or 
model 2A) and if the mirrors change, upon collision, from one kind (R, L) 
to the other (L, R), the model is called a flipping mirror model (or model 
2B). Model2 is a generalization to a triangular lattice of the model 
introduced by Ruijgrok and Cohen on a square lattice. I~ 

We remark that for C =  1, i.e., for a lattice fully occupied with 
scatterers, the particle trajectories of model 1 and model 2 map into each 
other. Furthermore, model 1B and model 2A are time-reversal invariant, 
while the others are not. We also note that while for the fixed models (IA 
and 2A) there is no interaction between the particles, in the flipping models 
(IB and 2B) the flipping of the mirrors by the colliding particles introduces 
interactions between particles and mirrors, so that, in particular, the 
particles do not move independently of each other anymore. Only when 
one considers a single moving particle in the flipping models does this 
interparticle interaction disappear. Thus, one can distinguish here the case 
of one or more than one moving particle. In the following we will restrict 
ourselves to the case of one moving particle. 

The macroscopic process that we study in these models is the diffusion 
of the moving particle(s) through the scatterers as a function of the nature 
and concentration of the scatterers. If the mean square displacement 3 ( t )  = 
(x2(t ) )  of a particle in a particular direction, the x axis say, 3 is proportional 
to the time t for long times, a diffusion coefficient D can be defined by 

(x2(t))  
D =  lim D( t )=  lim - -  (1) 

, ~  r ~  2t 

where the brackets ( . )  indicate an average over initial configurations of 
the particles and the scatterers. For a normal diffusion process, the 
probability distribution function P(r, t) to find a particle at the lattice site 
r at time t, when it was at the origin at t = 0, is Gaussian. Then, not only 
are its second moments with respect to x, y, and z equal to A( t )  and ~t ,  
but all its odd moments vanish and its even moments can be expressed in 

3 Since we only consider isotropic systems, all directions are equivalent. 
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terms of zt(t), so that all its cumulants vanish. In particular, the kurtosis 
K(t), defined by 

K =  (x4)  - 3 ( x 2 ) 2  

(x2)  2 (2) 

vanishes. 
In this paper we will restrict ourselves exclusively to the case of equal 

concentrations of right and left scatterers, i.e., CR = CL = C/2. 

2.2. The Boltzmann Approximat ion 

The Boltzmann approximation for the diffusion process assumes that 
a moving particle never collides twice with the same scatterer, so that no 
memory effects occur. Introducing then the one-particle distribution 
function ./)(r, t), which is proportional to the probability to find a particle 
with velocity direction i at the lattice site r at time t, the Boltzmann 
approximation leads to a discrete Boltzmann equation for .[,(r, t) on the 
lattice of the form t2~ 

6 

f , . ( r+ei ,  t + l ) =  ~' Tj i ( r , t ) ,  i=1 ..... 6 (3) 

where ei is the unit vector in the velocity direction i. The 6 • 6 collision 
matrix T in (3) is given by 

- c  0 c/2 0 c/2 0 \ 
0 - C 0 C/2 0 C/2 

o C/2 0 - C 0 C/2 

T = 0 C/2 0 - C 0 C/2 | (4) 

C/2 0 C/2 0 - C  O ,  

-c/ 0 C/2 0 C/2 0 

where the entries correspond to the 6 x 6 possible directions of pre- and 
postcollision velocities on a triangular lattice. 

The Boltzmann approximation D B to the diffusion coefficient D is 
easily obtained (2) from Eqs. (3) and (4) and reads 

1 1 
DB . . . .  (5) 

2C 4 

where the term - 1 / 4  is the usual "ballistic" contribution to the diffusion 
coefficient due to the discreteness of the lattice. (2'5) 



Lorentz Lattice Gas Cellular Automata  743 

2.3. Computer Simulations 

In our computer simulations we use a unit cell of 1024 • 1024 lattice 
sites for the regular lattice and 50 • 50 lattice sites for the random lattice 
and periodic boundary conditions 4 for the configurations of the randomly 
placed scatterers. About 2600 particles for the regular lattice and 1000 
particles for the random lattice are randomly placed on the iatice. We let 
them move on the "infinite checkerboard," in order to be able to compute 
zt(t), etc. The calculations were executed up to t =  214 time steps. 

The results are obtained in two steps. First an average is made over 
all particles for one simulation run; then further averages are computed 
over the results of many runs to obtain the final results with their statistical 
errors. The number of runs used is determined by the smoothness of the 
results. For the regular lattice, ten runs is usually enough; however, many 
more runs are needed for the random lattice because of the limited number 
of particles in each run. The standard deviations of the mean are plotted 
as the error bars of the data points in the figures. When no error bars are 
visible, they are inside the symbols. 

in order to determine the precise nature of the diffusion process, we 
sometimes have to determine the behavior of the probability distribution 
function P(r, t). Since we are dealing with isotropic systems, the radial 
distribution function 

~(2n fr" + I P(r, t)--- dO dr P(r, t) 
) 

is generated, where r and 0 are the polar coordinates of r. This is done by 
counting the number of particles between r and r + 1 at time t, when they 
started from the origin at t = 0. For comparison 

P~;(r, t) =- dO dr Pc(r ,  t) 

of the Gaussian distribution function Pc;(r, t), determined by the measured 
diffusion coefficient, is usually drawn with P(r, t). 

3. DIFFUSION ON A FULLY OCCUPIED LATTICE 
(FIXED SCATTERERS) 

3.1. Diffusion 

In this section we present our results for model A for the case that 
every lattice site is occupied by a fixed scatterer, so that C =  1 and 

4 Details for the random lattice can be found in ref. 20. 
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Fig. 2. Time dependence of the diffusion coefficient D for C =  I and C=0 .5  of model 1A 
(open circles) and model 2A (open triangles). The drawn line for the C=0 .5  case indicates 
( ~  - l o g  t) behavior. 

CR = CL = !/2. We shall see that the diffusive behavior at this concentra- 
tion is rather different from that at all other concentrations, but similar to 
that on a square lattice for all CL = CR. 

In Fig. 2 we show the time dependence of the diffusion coefficient D(t), 
as defined by Eq. (1), for the fixed scatterer models 1A and 2A. We see that 
after a short time, D(t) reaches a constant value. In spite of the fact that 
then LJ(t)~ t, the kurtosis K(t) does not vanish and, in fact, shows a 
behavior ,-,log t (cf. Fig. 3). This implies anomalous (class II) diffusion 
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Fig. 3. Time dependence of the kurtosis K for fixed scatterers and C =  ! and C=O.5. 
Symbols used here are the same as in Fig. 2. 
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Fig. 4. Radial density distribution function /6(r, t) as a function of distance r for fixed 
scatterers and C--- I at / =  ]000; the drawn curve is a Gaussian lht;(r, t) with the measured D. 
For r=0 ,  /~=0.12. 

and a non-Gaussian distribution function P(r, t), as is ilustrated in Fig. 4. 
The large peak at the origin is due to closed orbits, where the particle 
trajectories exhibit a periodic motion. 

3.2. Trajectories As Hulls of Percolation Clusters 

In this subsection, we want to demonstrate that the trajectories of the 
moving particle for the C =  1, fixed scatterer models (model IA and model 
2A) are so-called hull generating walks (HGW), (~j~ viz., they trace out the 
boundaries (hulls) of the percolation clusters, at the percolation threshold, 
of the site percolation problem of the triangular lattice. In the site percola- 
tion problem, each site has a probability p to be occupied, and the 
occupied sites form clusters if they are neighbors. The size of the cluster-- 
number of occupied sites in the cluster--can vary from cluster to cluster, 
but the average size is an increasing function of p. The percolation 
threshold, p =  1/2 for the site percolation on a triangular lattice, (m is 
where clusters with an infinite size start to form. In the C =  1 case of our 
fixed models, occupancy of a site by one particular kind of scatterer, say a 
left scatterer, is chosen as the occupancy of that site in the percolation 
sense. Then a right scatterer at the same site means that this site is not 
occupied. Since we have CL = CR = 1/2, each site has a probability p = 1/2 
to be occupied, so that the lattice is at the percolation threshold. Figure 5 
shows for model 2A (mirrors) that the trajectories trace out the boundaries 
between clusters of occupied sites and unoccupied sites (model2A 
illustrates this more clearly than model 1A). 5 

5 We remark that, like the fixed models on the square lattice, (2~ the trajectory of the moving 
particle can be considered as a smart  kinetic walk (SKW) "41 on a triangular lattice. 
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Fig. 5. A typical particle trajectory, for fixed scatterers and C =  I (illustrated for model 2A), 
as the boundary between two percolation clusters. The black (white) dots indicate occupied 
(unoccupied)lattice sites. 

It has been argued t t3) that these hulls themselves have scaling behavior 
and that at the threshold, their distribution function n ,  number of hulls 
with size s per bond--has  the form (~3) 

n , ~ s  -~ (6) 

where s is the size of the hull, i.e., the trajectory length of the moving 
particle, and ~ is the scaling exponent. Furthermore, the hulls are fractals, 
and the mean square end-to-end distance ( R  2) on these fractals is related 
to the fractal dimension dy by the scaling relation "3) 

(R] )  ~,s 2/al (7) 

Figure 6 shows a typical fractal generated by a moving particle at time 
t = 2  t6. 

The above scaling relations allow a deeper understanding of why the 
means square displacement A(t) of the particles is proportional 
to t, although no normal diffusion takes place. This can be achieved by 
connecting these scaling relations to a dynamical property of our diffusion 
process, viz. the mean square displacement/i(t). For, A(t) at time t can be 
written as a sum of contributions of closed trajectories (on hulls with sizes 
smaller than t) and of open trajectories (on hulls with sizes larger than t): 

A( t )=  (R2( t ) )= ~, si-~s2/aj" + ~, sl-~t 2/a' (8) 
8 ~ 0  S = t  
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where s ~ - T =  s . n ,  is the probabil i ty of  having a hull with size s. Replacing 
the sums by integrals yields 

A ( t )  ~ t 2 - "  + 2/dj (9) 

Using then the hyperscaling relation r - 1  =2 /ds ,  ~j3) we see that indeed 
zl(t) ~ t, in agreement with our  measurements.  This then also is consistent 
with the scaling laws (6) and (7). 

(a) 

(b) 
Fig. 6. (a) A typical fractal generated by a moving particle through fixed scatterers and 
C = I at t = 2'6; (b) a blowup of part of (a), where the underlying lattice structure can be seen. 

822fl,2/~-4-16 
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4. PROPAGATION ON A FULLY OCCUPIED LATTICE 
(FLIPPING SCATTERERS) 

A very remarkable behavior is obtained on a regular triangular lattice 
with flipping scatterers (model I B and model 2B) when the lattice is fully 
occupied by scatterers (C = 1 ). One can convince onself that if one starts 
a particle at t = 0 at an initial position with an initial velocity along a 
particular lattice direction, it will propagate through the lattice in three 
possible directions. These directions depend on the states (R or L) of at 
most four neighboring scatterers at t = 0: there is a probability of 3/8 to 
propagate in a direction that makes an angle of _+~/3 with the initial 
particle velocity and a probability of I/4 to propagate in the opposite direc- 
tion of the initial particle velocity. A typical example is sketched in Fig. 7, 
while in Fig. 8 the detailed scattering mechanism is shown that leads to the 
propagation. One sees that a moving particle, arriving at any lattice site A, 
can either be scattered "forward" (Fig. 8a) and move to point B, such that 
it travels a (projected) distance of 1/2 in its (coarse-grained) propagation 
direction, or be scattered "backward" (Fig. 8b) to point C and travel the 
same distance. In the latter case, it will take six additional time step~ (via 
points C D E C D) to arrive again at the site A (now with flipped mirror) 
and then move "forward" to point B. Thus the average forward speed of 
the moving particle fl, is given by 

1 1 1 
v._2 +7.�89 g t 0j 

$0  

2 ' )  

? 0  

1 [7 

10 

5 

0 

1 6  

] ] 

J__ �9 

14 ]'d 

I .... I I r I 

, > 

I _ ] _ L i. k "i~. 

I0 8 - 6 4 ? ~J 

Fig. 7. A typical propagation for flipping scatterers and C = 1 at t = 200. The first (t = 0) and 
the last (t = 200) steps have been marked with arrows, while the propagation direction is 
indicated by a heavy arrow. The x (y) axis indicates the x (y) coordinate of the particle. One 
sees that the propagation proceeds alternatively forward and backward, such that the average 
speed of propagation is 1/8. 
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a 

Fig, 8. Detailed propagation mechanism. Both possibilities of scattering at point A (R or L) 
end up at point B and lead to a (coarse-grained) propagation along the direction indicated 
by a heavy arrow. (a) Forward scattering directly from A to B; (b) backward scattering from 
A to C, which leads via C D E C D again to forward scattering from A to B. For clarity the 
particle trajectories have been curved and displaced from the lattice bonds, 

This is confirmed by the data shown in Fig. 9, where we also see that this 
propagation speed is quickly reached. 

The propagation implies that in this case the mean square displace- 
ment A( t )~  t 2. This should be distinguished from the enhanced diffusion 
discussed in the literature in connection with L6vy flights and Lbvy 
walks, "5) where the same behavior of A(t) is found, but where still difus- 
sion, albeit faster than normal, in all directions in the plane takes place, 
while here propagation in one particular direction only occurs. 
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Time dependence of the average speed 15p of propagation; the straight line is the 
fr = 1/8 line. 
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We remark that this propagating behavior depends on the chosen 
scattering rule. If one were to choose a scattering rule of rotation over ~/3 
at collision, the resulting motion would be normal diffusion on a 
honeycomb lattice. 

5. DIFFUSION ON A PARTIALLY OCCUPIED LATTICE 

5.1. Fixed Scatterers (Model 1A and Model 2A) 

Unlike the anomalous diffusion (class II) on the square lattice for 
C < I  (eL = Ca), the diffusion on the triangular lattice becomes abnormal 
(class !!I) for C <  1 (eL = Ca) for both models. Indeed, Fig. 2 shows that 
the diffusion coefficient D ( t ) ,  as defined by (!), decreases with t and 
appears to approach zero for large t. When a straight line is drawn through 
the points for the longest times in Fig. 2, a time dependence D ( t )  ~ - l og  t 
is found. This abnormal diffusion is therefore even slower than that found 
in the mixed lattice gas model on the square lattice 4'6~ as well as in the 
continuous Ehrenfest wind-tree model, t16 18~ which exhibited a power law 
behavior, with d ( t ) , , , t  ~ ~ ( 0 < 0 t < l ) .  Figure3 shows that the kurtosis 
increases with time, approximately ~ log  t, indicating a localization of the 
distribution function near the origin because of closed orbits. 

5.2. Flipping Scatterers (Model 1B and Model 2B) 

Although at C =  1 the flipping models do not exibit any diffusive 
behavior, since there is pure propagation, at C < 1 these models exhibit 
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�9 o " o  o o a +  + + 8 + 

I ' I I J 
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Fig. 10. Time dependence of D of model 1B (open circles) and model 2B (open triangles) 
for C = 0.5. 
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Fig. l 1. 
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Time dependence of K of model 1B (open circles) and model 2B (open triangles) 
for C = 0.5. 

normal diffusion, as was also found for the flipping mirror model on the 
square lattice. Figure 10 shows the time dependence of the diffusion 
coefficients for models 1 and 2 for C = 1/2. One sees that for not too long 
times, D approaches a constant value, which appears to differ, however, for 
the two models. Figure i 1 indicates that the kurtosis goes to zero at about 
the same time as the diffusion coefficient reaches a constant value. Together 
with the Gaussian probability density distribution implied by Fig. 12, this 
suggests that our data are consistent with a normal diffusion process 
(class I) for these intermediate densities. 
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0.000 I S 
0 40 80 120 160 200 

r 

Fig. 12. Radial density distribution function /~(r, t) for flipping scatterers of model I and 
model 2 and ( '  = 0.5 at / = 2048; the drawn curve is a Gaussian with the measured D. 
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Fig. 13. Time dependence of D for flipping scatterers and several high concentrations in a 
IogH~ D(t) versus log 2 t plot for C =  1 (filled squares); ( ' =  0.99 [open squares}; C =  0.98 trilled 
triangles}; C =  0.90 (open triangles). 

By studying the behavior at large concentrations, where C is near 1, 
one sees, however, that the approach to this normal behavior becomes very 
slow as C approaches 1 and if fact includes an increasingly large regime 
where the diffusion coefficient D(t) increases approximately linearly with 
time, leading to a diffusive behavior with A ( t ) ~ t  2 (cf. Fig. 13). This 
diffusive A(t),-,t 2 behavior for C =  I - e  with r,,~l must approach the 

Fig. 14. A typical trajectory of the moving particle for flipping mirrors for C =  0.99 
and t = 216. 
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propagating behavior with Ll(t) ~ t 2 that obtains for C = l. As far as we can 
tell, a direct transition of normal diffusion to propagation occurs via ever- 
increasing values of D, bypassing an enhanced diffusion regime, where 
A(t),-, t I +~, which 0 <  ~ < 1. There seems to be no connection, therefore, 
with L6vy flights. We note that the initial part of D(t), up to t = 2 5, is for 
all C coincident with the D(t) of the C =  1 case (cf. Fig. 13). Furthermore, 
the length of this coincidence scales as (I - C )  ~, which is proportional to 
the average distance between two unoccupied sites. This reflects the 
increasingly long time needed for the ultimate approach of D(t) to a 
constant value, when C approaches 1 (cf. Fig. 13). This final constant value 
of D(t) is due to the randomization of the many linear trajectory pieces (cf. 
Fig. 14) that occur, after a sufficiently long time. The C =  1 case represents, 
therefore, a singular case. 

6. DIFFUSION ON A R A N D O M  TRIANGULAR LATTICE 

The main purpose of studying nonregular lattices is to investigate 
whether significant differences will occur when the regularity of the basic 
lattice is destroyed and replaced, for instance, by a random lattice. In that 
case a new random element is introduced and the question is to what 
extent this will annihilate the peculiar properties of the diffusion in the 
deterministic scattering rule models, when compared to the normal diffu- 
sion that occurs in the probabilistic scattering rule models. The construc- 
tion of a random lattice is not unique, so that the results reported below 
must be viewed as pertaining to a particular type of random lattice only. 

Here we used the type of random lattice with periodic boundary 
conditions described in ref. 19. This lattice is constructed from a random 
distribution of points in a large square in the plane (the unit cell), with 
periodic boundary conditions. To determine the distribution of the bonds, 
sets of three points are considered; if the area contained in a circle through 
a given set of three points not contain any other point, then bonds are 
drawn between them to form a triangle. This procedure guarantees an 
approximate isotropy and the absence of crossed bonds and is easily 
implemented numerically (for details, see ref. 20). The random lattice so 
constructed triangulates the plane and has an average coordination 
number of six (cf. Fig. 15), so that the closest regular lattice to it is the 
regular triangular lattice. After construction of the random lattice we put 
scatterers on all its sites. Since, in general, no straight line passes through 
any lattice site, the moving particle has to make a turn at every site. We 
consider therefore only the case C =  1, equal concentration of both kinds 
of scatterers, and the scattering rule we implemented here is similar to the 
one used in model I, i.e., upon collision, the moving particle will turn the 
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Fig. 15. An example of a random lattice with 7 • 7 sites. 

widest angle possible to the right if colliding with a right scatterer, or to 
the left if colliding with a left scatterer. Although the average length of the 
bonds of the random lattice was equal to one, their individual lengths can 
be very different from one. Hence, unlike the regular lattice cases, a moving 
particle does not arrive at a lattice site at each time step. Because of the 
limitation of our computer facility, we could only generate lattices with 
2500 sites, which may have caused some boundary effects in our results in 
the long-time regime. Since we put only 1000 particles on the lattice in each 
run, we needed many more runs to get statistics as good as that for the 
regular lattice, discussed before. 

6.1. Fixed Scatterers 

In this case it proved difficult to obtain clear-cut results. The time 
dependences of both the diffusion coefficient D(t) and the kutrosis K(t) 
were determined. Up to t---21~ the data (cf. (Fig. 16) are consistent with 
anomalous diffusion (class II), since D seems to approach a constant and 
K differs from zero (cf. Fig. 17). However, one cannot exclude that the 
puzzling behavior for the largest observed times may indicate a different 
long-time behavior. This long-time behavior might also be caused by the 
small size of the lattice, since we have unit cells of 50 x 50 sites only. 

6.2. Flipping Scatterers 

In this case the diffusion appears to be normal, in striking contrast to 
the propagation that occurs on the regular triangular lattice. In fact, the 
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Time dependence of D for fixed scatterers (filed circles) and flipping scatterers 
(open circles) on a random lattice. 

behavior of this model appear to be like that for the flipping mirror model 
on a regular square latice, in that the diffusion coefficient D(t) approaches 
a constant value D, while the kurtosis K approaches zero (cf. Figs. 16 and 
17). We note that the value D for the flipping model is about twice that for 
the fixed model. This is due to the occurrence of regular triangular lattice- 
like patches in which propagation occurs. 

Fig. 17. 
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Time dependence of K for fixed scatterers (filled circles) and flipping scatterers 
(open circles) on a random lattice. 
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7. S U M M A R Y  AND DISCUSSION 

1. The diffusive behavior on regular square and triangular lattices 
not fully occupied by equal numbers of fixed right and left scatterers is 
similar, in that it is non-Gaussian in both cases; there is a difference in 
detail, however, in that the mean square displacement is proportional to 
the time in the first case (class II) and grows slower than that in the second 
case (class III). For flipping scatterers the behavior is again similar on the 
two lattices in that the diffusion is normal on both lattices. There is a 
considerable difference, however, in their concentration dependence. For, 
while the coefficient CD(C) varies mildly from 1/2 for C ~ 0  to ,~I/4 for 
C =  1 for the square lattice, it increases from a value of CD~ 1/3 for C ~ 0  
to an infinite value at C =  1, when propagation occurs, for the triangular 
lattice. While in the former case, the time it takes for D(t) to reach its 
asymptotic value is roughly independent of the concentration (always being 
about 2000 time steps), in the latter case this time increases indefinitely 
"-,- 1/(1 - C) when C approaches !. 

2. The diffusion on a fully occupied random (triangular-like) lattice 
seems to be like that on a square lattice, in that it appears to be anomalous 
for fixed scatterers and normal for flipping scatterers. Thus, the random- 
ness of the lattice does not guarantee normal diffusion. The random or 
deterministic character of the scattering rules is therefore in this case more 
important in determining the nature of the diffusion process than the 
randomness or regularity of the underlying lattice on which the diffusion 
takes place. 

3. The behavior found for the flipping models only obtains for 
strictly deterministic scattering rules. If one introduces a flipping proba- 
bility a (0 ~< a ~< 1), so that for ~ = 0 the fixed and for ~ = 1 the flipping 
scattering models are obtained, respectively, then we find that for 0 < a < 1, 
always normal diffusion occurs. 

Thus, it appears that the introduction of a probabilistic element in the 
scattering rules destroys the abnormal diffusive behavior found for strictly 
deterministic rules. It also destroys the unique connectivity of the deter- 
ministic trajectories, a feature it has in common with a class of reversible 
cellular automaton systems considered by Hasslacher and MeyerJ 21~ Since 
these authors uncovered a connection between such CA and knot theory, 
one could wonder whether not such a connection also exists for our deter- 
ministic scattering lattice gas CA. This might hold in particular for those 
models on fully occupied square or triangula~r lattices, which are time 
reversible and represent lattice gas cellular automata at criticality. 
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